Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Geroscience ; 46(1): 283-308, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37308769

RESUMO

Differences in brain structure and functional and structural network architecture have been found to partly explain cognitive performance differences in older ages. Thus, they may serve as potential markers for these differences. Initial unimodal studies, however, have reported mixed prediction results of selective cognitive variables based on these brain features using machine learning (ML). Thus, the aim of the current study was to investigate the general validity of cognitive performance prediction from imaging data in healthy older adults. In particular, the focus was with examining whether (1) multimodal information, i.e., region-wise grey matter volume (GMV), resting-state functional connectivity (RSFC), and structural connectivity (SC) estimates, may improve predictability of cognitive targets, (2) predictability differences arise for global cognition and distinct cognitive profiles, and (3) results generalize across different ML approaches in 594 healthy older adults (age range: 55-85 years) from the 1000BRAINS study. Prediction potential was examined for each modality and all multimodal combinations, with and without confound (i.e., age, education, and sex) regression across different analytic options, i.e., variations in algorithms, feature sets, and multimodal approaches (i.e., concatenation vs. stacking). Results showed that prediction performance differed considerably between deconfounding strategies. In the absence of demographic confounder control, successful prediction of cognitive performance could be observed across analytic choices. Combination of different modalities tended to marginally improve predictability of cognitive performance compared to single modalities. Importantly, all previously described effects vanished in the strict confounder control condition. Despite a small trend for a multimodal benefit, developing a biomarker for cognitive aging remains challenging.


Assuntos
Encéfalo , Imageamento por Ressonância Magnética , Imageamento por Ressonância Magnética/métodos , Encéfalo/diagnóstico por imagem , Neuroimagem , Cognição , Aprendizado de Máquina
2.
Sci Rep ; 13(1): 16912, 2023 10 07.
Artigo em Inglês | MEDLINE | ID: mdl-37805638

RESUMO

The protective effects of multiple language knowledge on the maintenance of cognitive functions in older adults have been discussed controversially, among others, because of methodological inconsistencies between studies. In a sample of N = 528 German monolinguals and multilinguals (speaking two or more languages) older than 60 years, this study examined (1) whether speaking multiple languages is positively related to performance on tasks of interference suppression, working memory, concept shifting, and phonemic and semantic fluency, and (2) whether language proficiency and age of second language acquisition (AoA) are associated with cognitive performance of multilinguals. Controlling for education and daily activity, we found small cognitive benefits of speaking multiple languages on interference suppression, working memory, and phonemic fluency, but not on concept shifting and semantic fluency. Furthermore, no substantive correlations were found between language proficiency or AoA and cognitive performance. In conclusion, multilingualism appears to have small incremental effects on cognitive performance beyond education and daily activity in older age that are task-specific and widely independent of proficiency and AoA.


Assuntos
Multilinguismo , Humanos , Idoso , Comportamento Verbal , Idioma , Semântica , Cognição
3.
Neuroimage ; 283: 120403, 2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-37865260

RESUMO

The mechanisms of cognitive decline and its variability during healthy aging are not fully understood, but have been associated with reorganization of white matter tracts and functional brain networks. Here, we built a brain network modeling framework to infer the causal link between structural connectivity and functional architecture and the consequent cognitive decline in aging. By applying in-silico interhemispheric degradation of structural connectivity, we reproduced the process of functional dedifferentiation during aging. Thereby, we found the global modulation of brain dynamics by structural connectivity to increase with age, which was steeper in older adults with poor cognitive performance. We validated our causal hypothesis via a deep-learning Bayesian approach. Our results might be the first mechanistic demonstration of dedifferentiation during aging leading to cognitive decline.


Assuntos
Envelhecimento Saudável , Substância Branca , Humanos , Idoso , Teorema de Bayes , Encéfalo , Envelhecimento/psicologia , Imageamento por Ressonância Magnética
4.
Front Aging Neurosci ; 15: 1193283, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37547741

RESUMO

Background: Bilingualism is associated with higher gray matter volume (GMV) as a form of brain reserve in brain regions such as the inferior frontal gyrus (IFG) and the inferior parietal lobule (IPL). A recent cross-sectional study reported the age-related GMV decline in the left IFG and IPL to be steeper for bilinguals than for monolinguals. The present study aimed at supporting this finding for the first time with longitudinal data. Methods: In the current study, 200 participants aged 19 to 79 years (87 monolinguals, 113 sequential bilinguals, mostly native German speakers with variable second language background) were included. Trajectories of GMV decline in the bilateral IFG and IPL were analyzed in mono- and bilinguals over two time points (mean time interval: 3.6 years). For four regions of interest (left/right IFG and left/right IPL), mixed Analyses of Covariance were conducted to assess (i) GMV changes over time, (ii) GMV differences for language groups (monolinguals/bilinguals), and (iii) the interaction between time point and language group. Corresponding analyses were conducted for the two factors of GMV, surface area (SA) and cortical thickness (CT). Results: There was higher GMV in bilinguals compared to monolinguals in the IPL, but not IFG. While the left and right IFG and the right IPL displayed a similar GMV change in mono- and bilinguals, GMV decline within the left IPL was significantly steeper in bilinguals. There was greater SA in bilinguals in the bilateral IPL and a steeper CT decline in bilinguals within in the left IPL. Conclusion: The cross-sectional observations of a steeper GMV decline in bilinguals could be confirmed for the left IPL. Additionally, the higher GMV in bilinguals in the bilateral IPL may indicate that bilingualism contributes to brain reserve especially in posterior brain regions. SA appeared to contribute to bilinguals' higher GMV in the bilateral IPL, while CT seemed to account for the steeper structural decline in bilinguals in the left IPL. The present findings demonstrate the importance of time as an additional factor when assessing the neuroprotective effects of bilingualism on structural features of the human brain.

5.
Netw Neurosci ; 7(1): 122-147, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37339286

RESUMO

Age-related cognitive decline varies greatly in healthy older adults, which may partly be explained by differences in the functional architecture of brain networks. Resting-state functional connectivity (RSFC) derived network parameters as widely used markers describing this architecture have even been successfully used to support diagnosis of neurodegenerative diseases. The current study aimed at examining whether these parameters may also be useful in classifying and predicting cognitive performance differences in the normally aging brain by using machine learning (ML). Classifiability and predictability of global and domain-specific cognitive performance differences from nodal and network-level RSFC strength measures were examined in healthy older adults from the 1000BRAINS study (age range: 55-85 years). ML performance was systematically evaluated across different analytic choices in a robust cross-validation scheme. Across these analyses, classification performance did not exceed 60% accuracy for global and domain-specific cognition. Prediction performance was equally low with high mean absolute errors (MAEs ≥ 0.75) and low to none explained variance (R2 ≤ 0.07) for different cognitive targets, feature sets, and pipeline configurations. Current results highlight limited potential of functional network parameters to serve as sole biomarker for cognitive aging and emphasize that predicting cognition from functional network patterns may be challenging.

6.
Brain Struct Funct ; 228(1): 83-102, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-35904594

RESUMO

The angular gyrus (AG) has been associated with multiple cognitive functions, such as language, spatial and memory functions. Since the AG is thought to be a cross-modal hub region suffering from significant age-related structural atrophy, it may also play a key role in age-related cognitive decline. However, the exact relation between structural atrophy of the AG and cognitive decline in older adults is not fully understood, which may be related to two aspects: First, the AG is cytoarchitectonically divided into two areas, PGa and PGp, potentially sub-serving different cognitive functions. Second, the older adult population is characterized by high between-subjects variability which requires targeting individual phenomena during the aging process. We therefore performed a multimodal (gray matter volume [GMV], resting-state functional connectivity [RSFC] and structural connectivity [SC]) characterization of AG subdivisions PGa and PGp in a large older adult population, together with relations to age, cognition and lifestyle on the group level. Afterwards, we switched the perspective to the individual, which is especially important when it comes to the assessment of individual patients. The AG can be considered a heterogeneous structure in of the older brain: we found the different AG parts to be associated with different patterns of whole-brain GMV associations as well as their associations with RSFC, and SC patterns. Similarly, differential effects of age, cognition and lifestyle on the GMV of AG subdivisions were observed. This suggests each region to be structurally and functionally differentially involved in the older adult's brain network architecture, which was supported by differential molecular and genetic patterns, derived from the EBRAINS multilevel atlas framework. Importantly, individual profiles deviated considerably from the global conclusion drawn from the group study. Hence, general observations within the older adult population need to be carefully considered, when addressing individual conditions in clinical practice.


Assuntos
Mapeamento Encefálico , Imageamento por Ressonância Magnética , Humanos , Idoso , Encéfalo/diagnóstico por imagem , Cognição , Lobo Parietal
7.
Environ Health Perspect ; 130(9): 97007, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-36154234

RESUMO

BACKGROUND: Older adults show a high variability in cognitive performance that cannot be explained by aging alone. Although research has linked air pollution and noise to cognitive impairment and structural brain alterations, the potential impact of air pollution and noise on functional brain organization is unknown. OBJECTIVE: This study examined the associations between long-term air pollution and traffic noise with measures of functional brain organization in older adults. We hypothesize that exposures to high air pollution and noise levels are associated with age-like changes in functional brain organization, shown by less segregated brain networks. METHODS: Data from 574 participants (44.1% female, 56-85 years of age) in the German 1000BRAINS study (2011-2015) were analyzed. Exposure to particulate matter (PM10, PM2.5, and PM2.5 absorbance), accumulation mode particle number (PNAM), and nitrogen dioxide (NO2) was estimated applying land-use regression and chemistry transport models. Noise exposures were assessed as weighted 24-h (Lden) and nighttime (Lnight) means. Functional brain organization of seven established brain networks (visual, sensorimotor, dorsal and ventral attention, limbic, frontoparietal and default network) was assessed using resting-state functional brain imaging data. To assess functional brain organization, we determined the degree of segregation between networks by comparing the strength of functional connections within and between networks. We estimated associations between air pollution and noise exposure with network segregation, applying multiple linear regression models adjusted for age, sex, socioeconomic status, and lifestyle variables. RESULTS: Overall, small associations of high exposures with lesser segregated networks were visible. For the sensorimotor networks, we observed small associations between high air pollution and noise and lower network segregation, which had a similar effect size as a 1-y increase in age [e.g., in sensorimotor network, -0.006 (95% CI: -0.021, 0.009) per 0.3 ×10-5/m increase in PM2.5 absorbance and -0.004 (95% CI: -0.006, -0.002) per 1-y age increase]. CONCLUSION: High exposure to air pollution and noise was associated with less segregated functional brain networks. https://doi.org/10.1289/EHP9737.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Ruído dos Transportes , Idoso , Exposição Ambiental , Feminino , Humanos , Masculino , Dióxido de Nitrogênio/análise , Ruído dos Transportes/efeitos adversos , Material Particulado/análise
8.
Hum Brain Mapp ; 43(18): 5543-5561, 2022 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-35916531

RESUMO

In the normal aging process, the functional connectome restructures and shows a shift from more segregated to more integrated brain networks, which manifests itself in highly different cognitive performances in older adults. Underpinnings of this reorganization are not fully understood, but may be related to age-related differences in structural connectivity, the underlying scaffold for information exchange between regions. The structure-function relationship might be a promising factor to understand the neurobiological sources of interindividual cognitive variability, but remain unclear in older adults. Here, we used diffusion weighted and resting-state functional magnetic resonance imaging as well as cognitive performance data of 573 older subjects from the 1000BRAINS cohort (55-85 years, 287 males) and performed a partial least square regression on 400 regional functional and structural connectivity (FC and SC, respectively) estimates comprising seven resting-state networks. Our aim was to identify FC and SC patterns that are, together with cognitive performance, characteristic of the older adults aging process. Results revealed three different aging profiles prevalent in older adults. FC was found to behave differently depending on the severity of age-related SC deteriorations. A functionally highly interconnected system is associated with a structural connectome that shows only minor age-related decreases. Because this connectivity profile was associated with the most severe age-related cognitive decline, a more interconnected FC system in older adults points to a process of dedifferentiation. Thus, functional network integration appears to increase primarily when SC begins to decline, but this does not appear to mitigate the decline in cognitive performance.


Assuntos
Encéfalo , Conectoma , Masculino , Humanos , Idoso , Encéfalo/diagnóstico por imagem , Conectoma/métodos , Imageamento por Ressonância Magnética/métodos , Envelhecimento/patologia , Rede Nervosa/diagnóstico por imagem
9.
Sci Rep ; 12(1): 2969, 2022 02 22.
Artigo em Inglês | MEDLINE | ID: mdl-35194054

RESUMO

Neuropsychological studies reported that shift workers show reduced cognitive performance and circadian dysfunctions which may impact structural and functional brain networks. Here we tested the hypothesis whether night shift work is associated with resting-state functional connectivity (RSFC), cortical thickness and gray matter volume in participants of the 1000BRAINS study for whom information on night shift work and imaging data were available. 13 PRESENT and 89 FORMER night shift workers as well as 430 control participants who had never worked in shift (NEVER) met these criteria and were included in our study. No associations between night shift work, three graph-theoretical measures of RSFC of 7 functional brain networks and brain morphology were found after multiple comparison correction. Preceding multiple comparison correction, our results hinted at an association between more years of shift work and higher segregation of the visual network in PRESENT shift workers and between shift work experience and lower gray matter volume of the left thalamus. Extensive neuropsychological investigations supplementing objective imaging methodology did not reveal an association between night shift work and cognition after multiple comparison correction. Our pilot study suggests that night shift work does not elicit general alterations in brain networks and affects the brain only to a limited extent. These results now need to be corroborated in studies with larger numbers of participants.


Assuntos
Encéfalo/fisiopatologia , Cognição , Rede Nervosa/fisiopatologia , Jornada de Trabalho em Turnos , Idoso , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Projetos Piloto
10.
Neuroimage ; 214: 116756, 2020 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-32201326

RESUMO

Healthy aging has been associated with a decrease in functional network specialization. Importantly, variability of alterations of functional connectivity is especially high across older adults. Whole-brain functional network reorganization, though, and its impact on cognitive performance within particularly the older generation is still a matter of debate. We assessed resting state functional connectivity (RSFC) in 772 older adults (55-85 years, 421 males) using a graph-theoretical approach. Results show overall age-related increases of between- and decreases of within-network RSFC. With similar phenomena observed in young to middle-aged adults, i.e. that RSFC reorganizes towards more pronounced functional network integration, the current results amend such evidence for the old age. The results furthermore indicate that RSFC reorganization in older adults particularly pertain to early sensory networks (e.g. visual and sensorimotor network). Importantly, RSFC differences of these early sensory networks were found to be a relevant mediator in terms of the age-related cognitive performance differences. Further, we found systematic sex-related network differences with females showing patterns of more segregation (i.e. default mode and ventral attention network) and males showing a higher integrated network system (particularly for the sensorimotor network). These findings underpin the notion of sex-related connectivity differences, possibly facilitating sex-related behavioral functioning.


Assuntos
Encéfalo/fisiopatologia , Cognição/fisiologia , Conectoma , Envelhecimento Saudável/fisiologia , Rede Nervosa/fisiopatologia , Idoso , Idoso de 80 Anos ou mais , Imagem Ecoplanar , Feminino , Humanos , Processamento de Imagem Assistida por Computador , Masculino , Pessoa de Meia-Idade , Caracteres Sexuais
11.
Neurobiol Aging ; 81: 157-165, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31280119

RESUMO

There is a lively debate whether bilingualism as a state of permanent cognitive control contributes to so-called brain reserve, thus delaying the onset of symptoms associated with neurodegeneration by up to 5 years. Here, we address this question in a large-scale (n = 399) population-based study. We compared the gray matter volume of monolinguals versus bilinguals in the left inferior frontal gyrus and inferior parietal lobule cortex and its modulation by biological age. Three core findings emerged: (1) Brain volume was systematically higher in bilinguals than monolinguals. (2) This difference disappeared at higher ages, and the slope of decline was steeper for bilinguals than monolinguals. (3) The volume difference between age groups disappeared in the inferior frontal gyrus at earlier ages than in the inferior parietal lobule. Thus, bilingualism might indeed contribute to brain reserve in older age, with posterior regions showing a particular resilience to atrophy and thus less necessity for functions to shift to anterior control regions.


Assuntos
Envelhecimento , Reserva Cognitiva , Substância Cinzenta/patologia , Multilinguismo , Feminino , Substância Cinzenta/diagnóstico por imagem , Substância Cinzenta/fisiologia , Humanos , Imageamento por Ressonância Magnética , Masculino , Doenças Neurodegenerativas , Tamanho do Órgão
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA